Answer:
Option B
Explanation:
g(x).g(y) =g(x)+g(y)+g(xy)-2 ...(i)
Put x=1, y=2 then
g(1). g(2)=g(1)+g(2)+g(2)-2
5g(1)- g(1) +5+5-2
4g(1)= 8
$\therefore$ g(1)=2
Put y = $\frac{1}{x}$ in equation (i) , we get
g(x) , g($\frac{1}{x}$ )= g(x) + g( $\frac{1}{x}$)+g(1)-2
g(x) . g($\frac{1}{x}$) = g(x) + g($\frac{1}{x}$)+2-2
[$\because$ g(1)=2]
This valid only for the polynomial
$\therefore$ g(x) = 1$\pm$xn .................(2)
Now g(2)=5 (Given)
$\therefore$ 1$\pm$ 2n= 5 [Using equation(2)]
$\pm$ 2n =4, $\Rightarrow$ 2n =4,-4
Since , the value of 2n cannot be -Ve
So , 2n =4 . $\Rightarrow$ n=2
Now, put n=2 in equation (2) , we get
g(x) =1 $\pm$ x2
$\therefore Lt_{x \rightarrow 3}g(x)=Lt_{x \rightarrow 3} (1\pm x^{2})= 1\pm (3)^{2}$
= $ 1\pm 9=10,-8$